Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 199
Filtrar
1.
bioRxiv ; 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38559052

RESUMO

In-space manufacturing of nanomaterials is a promising concept while having limited successful examples. DNA-inspired Janus base nanomaterials (JBNs), used for therapeutics delivery and tissue regeneration, are fabricated via a controlled self-assembly process in water at ambient temperature, making them highly suitable for in-space manufacturing. For the first time, we designed and accomplished the production of JBNs on orbit during the Axiom-2 (Ax-2) mission demonstrating great promising and benefits of in-space manufacturing of nanomaterials.

2.
PLoS One ; 19(4): e0300022, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38573982

RESUMO

BACKGROUND: Inflammation is the common pathogenesis of coronary atherosclerosis disease (CAD) and rheumatoid arthritis (RA). Although it is established that RA increases the risk of CAD, the underlining mechanism remained indefinite. This study seeks to explore the molecular mechanisms of RA linked CAD and identify potential target gene for early prediction of CAD in RA patients. MATERIALS AND METHODS: The study utilized five raw datasets: GSE55235, GSE55457, GSE12021 for RA patients, and GSE42148 and GSE20680 for CAD patients. Gene Set Enrichment Analysis (GSEA) was used to investigate common signaling pathways associated with RA and CAD. Then, weighted gene co-expression network analysis (WGCNA) was performed on RA and CAD training datasets to identify gene modules related to single-sample GSEA (ssGSEA) scores. Overlapping module genes and differentially expressed genes (DEGs) were considered as co-susceptible genes for both diseases. Three hub genes were screened using a protein-protein interaction (PPI) network analysis via Cytoscape plug-ins. The signaling pathways, immune infiltration, and transcription factors associated with these hub genes were analyzed to explore the underlying mechanism connecting both diseases. Immunohistochemistry and qRT-PCR were conducted to validate the expression of the key candidate gene, PPARG, in macrophages of synovial tissue and arterial walls from RA and CAD patients. RESULTS: The study found that Fc-gamma receptor-mediated endocytosis is a common signaling pathway for both RA and CAD. A total of 25 genes were screened by WGCNA and DEGs, which are involved in inflammation-related ligand-receptor interactions, cytoskeleton, and endocytosis signaling pathways. The principal component analysis(PCA) and support vector machine (SVM) and receiver-operator characteristic (ROC) analysis demonstrate that 25 DEGs can effectively distinguish RA and CAD groups from normal groups. Three hub genes TUBB2A, FKBP5, and PPARG were further identified by the Cytoscape software. Both FKBP5 and PPARG were downregulated in synovial tissue of RA and upregulated in the peripheral blood of CAD patients and differential mRNAexpreesion between normal and disease groups in both diseases were validated by qRT-PCR.Association of PPARG with monocyte was demonstrated across both training and validation datasets in CAD. PPARG expression is observed in control synovial epithelial cells and foamy macrophages of arterial walls, but was decreased in synovial epithelium of RA patients. Its expression in foamy macrophages of atherosclerotic vascular walls exhibits a positive correlation (r = 0.6276, p = 0.0002) with CD68. CONCLUSION: Our findings suggest that PPARG may serve as a potentially predictive marker for CAD in RA patients, which provides new insights into the molecular mechanism underling RA linked CAD.


Assuntos
Artrite Reumatoide , Aterosclerose , Doença da Artéria Coronariana , Humanos , Artrite Reumatoide/genética , Aterosclerose/genética , Biologia Computacional , Doença da Artéria Coronariana/genética , Análise de Dados , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Inflamação , PPAR gama/genética
3.
J Colloid Interface Sci ; 666: 57-65, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38583210

RESUMO

Modification of oxygen evolution co-catalyst (OEC) on the surface of bismuth vanadate (BiVO4) can effectively improve the kinetics of water oxidation, but it is still limited by the small hole extraction driving force at the BiVO4/OEC interface. Modulating the BiVO4/OEC interface with a hole transfer layer (HTL) is expected to facilitate hole transport from BiVO4 to the OEC surface. Herein, a copper(I) thiocyanate (CuSCN) HTL is inserted between BiVO4 and NiFeOx OEC to create BiVO4/CuSCN/NiFeOx photoanode, resulting in a significant enhancement of photoelectrochemical (PEC) water splitting performance. From electrochemical analyses and density functional theory (DFT) simulations, the markedly enhanced PEC performance is attributed to the insertion of CuSCN as an HTL, which promotes the extraction of holes from BiVO4 surface and boosts the water oxidation kinetics. The optimal photoanode achieves a photocurrent density of 5.6 mA cm-2 at 1.23 V versus the reversible hydrogen electrode (vs. RHE) and an impressive charge separation efficiency of 96.2 %. This work offers valuable insights into the development of advanced photoanodes for solar energy conversion and emphasizes the importance of selecting an appropriate HTL to mitigate recombination at the BiVO4/OEC interface.

4.
J Neurotrauma ; 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38553903

RESUMO

Traumatic brain injury (TBI)-a severe clinical problem-is compounded by a lack of effective treatments and impeded intracranial metabolic waste clearance. The glymphatic system and meningeal lymphatic vessels are instrumental in TBI pathophysiology and crucial for clearing harmful substances. Cannabidiol (CBD) has the potential to address metabolic imbalances and improve cognitive functions in neurodegenerative diseases, but its specific effect on TBI remains unclear. Using a fluid percussion injury model, we adopted a comprehensive approach that included behavioral testing, various imaging techniques, and deep cervical lymph node (dCLN) ligation to evaluate CBD's effects on neurological outcomes and lymphatic clearance in a TBI mouse model. Our results demonstrated that CBD markedly enhanced motor, memory, and cognitive functions, correlating with reduced levels of detrimental neural proteins. CBD also expedited the removal of intracranial tracers, increased cerebral blood flow, and improved tracer migration from lymphatic vessels to dCLNs. Intriguingly, CBD treatment modified aquaporin-4 polarization and diminished neuroinflammatory indicators. A key observation was that disrupting efferent lymphatic channels nullified CBD's positive effects on waste removal and cognitive enhancements, whereas its anti-inflammatory benefits continued. This finding suggests that CBD's ability to improve waste clearance may operate via the lymphatic system, thereby improving neurological outcomes in TBI patients. Therefore, our study underscores CBD's potential therapeutic role in TBI management.

5.
Phytomedicine ; 128: 155396, 2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38547617

RESUMO

BACKGROUND: Abnormalities in glucose metabolism may be the underlying cause of ß-cell dysfunction and identity impairment resulting from high glucose exposure. In China, Coptis deltoidea C. Y. Cheng et Hsiao (YL) has demonstrated remarkable hypoglycemic effects. HYPOTHESIS/PURPOSE: To investigate the hypoglycemic effect of YL and determine the mechanism of YL in treating diabetes. METHODS: A type 2 diabetes mouse model was used to investigate the pharmacodynamics of YL. YL was administrated once daily for 8 weeks. The hypoglycemic effect of YL was assessed by fasting blood glucose, an oral glucose tolerance test, insulin levels, and other indexes. The underlying mechanism of YL was examined by targeting glucose metabolomics, western blotting, and qRT-PCR. Subsequently, the binding capacity between predicted AMP-activated protein kinase (AMPK) and important components of YL (Cop, Ber, and Epi) were validated by molecular docking and surface plasmon resonance. Then, in AMPK knockdown MIN6 cells, the mechanisms of Cop, Ber, and Epi were inversely confirmed through evaluations encompassing glucose-stimulated insulin secretion, markers indicative of ß-cell identity, and the examination of glycolytic genes and products. RESULTS: YL (0.9 g/kg) treatment exerted notable hypoglycemic effects and protected the structural integrity and identity of pancreatic ß-cells. Metabolomic analysis revealed that YL inhibited the hyperactivated glycolysis pathway in diabetic mice, thereby regulating the products of the tricarboxylic acid cycle. KEGG enrichment revealed the intimate relationship of this process with the AMPK signaling pathway. Cop, Ber, and Epi in YL displayed high binding affinities for AMPK protein. These compounds played a pivotal role in preserving the identity of pancreatic ß-cells and amplifying insulin secretion. The mechanism underlying this process involved inhibition of glucose uptake, lowering intracellular lactate levels, and elevating acetyl coenzyme A and ATP levels through AMPK signaling. The use of a glycolytic inhibitor corroborated that attenuation of glycolysis restored ß-cell identity and function. CONCLUSION: YL demonstrates significant hypoglycemic efficacy. We elucidated the potential mechanisms underlying the protective effects of YL and its active constituents on ß-cell function and identity by observing glucose metabolism processes in pancreatic tissue and cells. In this intricate process, AMPK plays a pivotal regulatory role.

6.
ACS Nano ; 18(12): 9043-9052, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38483837

RESUMO

Natural organisms have evolved various biological ion channels to make timely responses toward different physical and/or chemical stimuli, giving guidance to construct artificial counterparts and expand the corresponding applications. They have also shown promising potential to overcome disadvantages of traditional electronic devices (e.g., energy-consuming operation and adverse humidity interference). Herein, we constructed a green alga-inspired nanofluidic system based on a Janus dual-field heterogeneous membrane (i.e., J-HM), which can function underwater as an artificial visual platform for light perception through enhanced active ion transport. The J-HM was obtained through sequentially assembled MXene and Cu-HHTP (i.e., a metal-organic framework based on the reaction between 2,3,6,7,10,11-hexahydroxytriphenylene hydrate (HHTP) and Cu2+) building units. Due to the formed temperature gradient and intramembrane electric field caused by the localized thermal excitation and efficient charge separation of J-HM under illumination, thermo-osmotic and photo-driven forces are generated for preferential cation transport from Cu-HHTP to MXene. Furthermore, unidirectional active transport can be enhanced by self-diffusion under a concentration gradient. Then, the corresponding underwater light perceptions at various light illumination conditions are explored, showing nearly a linear correlation with the light intensity. Finally, it is demonstrated that the visual platform can achieve object shape, definition, and distance recognition using a defined pixelated matrix, giving impetus to develop ionic signal transmission based sensing systems.

7.
CNS Neurosci Ther ; 30(3): e14673, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38468459

RESUMO

AIM: We aim to identify the specific CD4+ T-cell subtype influenced by brain-to-CLN signaling and explore their role during the acute phase of traumatic brain injury (TBI). METHOD: Cervical lymphadenectomy or cervical afferent lymphatic ligation was performed before TBI. Cytokine array and western blot were used to detect cytokines, while the motor function was assessed using mNss and rotarod test. CD4+ T-cell subtypes in blood, brain, and CLNs were analyzed with Cytometry by time-of-flight analysis (CyTOF) or fluorescence-activated cell sorting (FACS). Brain edema and volume changes were measured by 9.4T MRI. Neuronal apoptosis was evaluated by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining. RESULTS: Cervical lymphadenectomy and ligation of cervical lymphatic vessels resulted in a decreased infiltration of CD4+ T cells, specifically CD11b-positive CD4+ T cells, within the affected region. The population of CD4+ CD11b+ T cells increased in ligated CLNs, accompanied by a decrease in the average fluorescence intensity of sphingosine-1-phosphate receptor-1 (S1PR1) on these cells. Administration of CD4+ CD11b+ T cells sorted from CLNs into the lateral ventricle reversed the attenuated neurologic deficits, brain edema, and lesion volume following cervical lymphadenectomy. CONCLUSION: The infiltration of CD4+ CD11b+ T cells exacerbates secondary brain damage in TBI, and this process is modulated by brain-to-CLN signaling.


Assuntos
Edema Encefálico , Lesões Encefálicas Traumáticas , Vasos Linfáticos , Humanos , Animais , Edema Encefálico/patologia , Linfócitos T , Lesões Encefálicas Traumáticas/patologia , Encéfalo/patologia , Apoptose , Citocinas , Vasos Linfáticos/patologia , Linfócitos T CD4-Positivos , Linfonodos/diagnóstico por imagem , Linfonodos/patologia , Modelos Animais de Doenças
8.
Phytomedicine ; 126: 155297, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38342019

RESUMO

BACKGROUND: Research on the imbalance of proopiomelanocortin (POMC)/agouti-related protein (AgRP) neurons in the hypothalamus holds potential insights into the pathophysiology of diabetes. Jinkui Shenqi pills (JSP), a prevalent traditional Chinese medicine, regulate hypothalamic function and treat diabetes. PURPOSE: To investigate the hypoglycemic effect of JSP and explore the probable mechanism in treating diabetes. METHODS: A type 2 diabetes mouse model was used to investigate the pharmacodynamics of JSP. The glucose-lowering efficacy of JSP was assessed through various metrics including body weight, food consumption, fasting blood glucose (FBG), serum insulin levels, and an oral glucose tolerance test (OGTT). To elucidate the modulatory effects of JSP on hypothalamic mechanisms, we quantified the expression and activity of POMC and AgRP and assessed the insulin-mediated phosphoinositide 3-kinase (PI3K)/protein kinase A (AKT)/forkhead box O1 (FOXO1) pathway in diabetic mice via western blotting and immunohistochemistry. Additionally, primary hypothalamic neurons were exposed to high glucose and palmitic acid levels to induce insulin resistance, and the influence of JSP on POMC/AgRP protein expression and activation was evaluated by PI3K protein inhibition using western blotting and immunofluorescence. RESULTS: Medium- and high-dose JSP treatment effectively inhibited appetite, resulting in a steady declining trend in body weight, FBG, and OGTT results in diabetic mice (p < 0.05). These JSP groups also had significantly increased insulin levels (p < 0.05). Importantly, the medium-dose group exhibited notable protection of hypothalamic neuronal and synaptic structures, leading to augmentation of dendritic length and branching (p < 0.05). Furthermore, low-, medium-, and high-dose JSP groups exhibited increased phosphorylated (p) INSR, PI3K, pPI3K, AKT, and pAKT expression, as well as decreased FOXO1 and increased pFOXO1 expression, indicating improved hypothalamic insulin resistance in diabetic mice (p < 0.05). Treatment with 10% JSP-enriched serum produced a marked elevation of both expression and activation of POMC (p < 0.05), with a concurrent reduction in AgRP expression and activation within primary hypothalamic neurons (p < 0.05). Intriguingly, these effects could be attributed to the regulatory dynamics of PI3K activity. CONCLUSION: Our findings suggest that JSP can ameliorate diabetes by regulating POMC/AgRP expression and activity. The insulin-mediated PI3K/AKT/FOXO1 pathway plays an important regulatory role in this intricate process.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Medicamentos de Ervas Chinesas , Resistência à Insulina , Camundongos , Animais , Proteína Relacionada com Agouti/metabolismo , Proteína Relacionada com Agouti/farmacologia , Pró-Opiomelanocortina/metabolismo , Pró-Opiomelanocortina/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Hipotálamo/metabolismo , Insulina/metabolismo , Glucose/metabolismo , Peso Corporal
9.
bioRxiv ; 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38328235

RESUMO

Despite the development of various drug delivery technologies, there remains a significant need for vehicles that can improve targeting and biodistribution in "hard-to-penetrate" tissues. Some solid tumors, for example, are particularly challenging to penetrate due to their dense extracellular matrix (ECM). In this study, we have formulated a new family of rod-shaped delivery vehicles named Janus base nanopieces (Rod JBNps), which are more slender than conventional spherical nanoparticles, such as lipid nanoparticles (LNPs). These JBNp nanorods are formed by bundles of DNA-inspired Janus base nanotubes (JBNts) with intercalated delivery cargoes. To develop this novel family of delivery vehicles, we employed a computation-aided design (CAD) methodology that includes molecular dynamics and response surface methodology. This approach precisely and efficiently guides experimental designs. Using an ovarian cancer model, we demonstrated that JBNps markedly improve penetration into the dense ECM of solid tumors, leading to better treatment outcomes compared to FDA-approved spherical LNP delivery. This study not only successfully developed a rod-shaped delivery vehicle for improved tissue penetration but also established a CAD methodology to effectively guide material design.

10.
Theranostics ; 14(1): 304-323, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38164141

RESUMO

Rationale: Meningeal lymphatic vessels (MLVs) are essential for the clearance of subdural hematoma (SDH). However, SDH impairs their drainage function, and the pathogenesis remains unclear. Herein, we aimed to understand the pathological mechanisms of MLV dysfunction following SDH and to test whether atorvastatin, an effective drug for SDH clearance, improves meningeal lymphatic drainage (MLD). Methods: We induced SDH models in rats by injecting autologous blood into the subdural space and evaluated MLD using Gadopentetate D, Evans blue, and CFSE-labeled erythrocytes. Whole-mount immunofluorescence and transmission electron microscopy were utilized to detect the morphology of MLVs. Phosphoproteomics, western blot, flow cytometry, and in vitro experiments were performed to investigate the molecular mechanisms underlying dysfunctional MLVs. Results: The basal MLVs were detected to have abundant valves and play an important role in draining subdural substances. Following SDH, these basal MLVs exhibited disrupted endothelial junctions and dilated lumen, leading to impaired MLD. Subsequent proteomics analysis of the meninges detected numerous dephosphorylated proteins, primarily enriched in the adherens junction, including significant dephosphorylation of ERK1/2 within the meningeal lymphatic endothelial cells (LECs). Subdural injection of the ERK1/2 kinase inhibitor PD98059 resulted in dilated basal MLVs and impaired MLD, resembling the dysfunctional MLVs observed in SDH. Moreover, inhibiting ERK1/2 signaling severely disrupted intercellular junctions between cultured LECs. Finally, atorvastatin was revealed to protect the structure of basal MLVs and accelerate MLD following SDH. However, these beneficial effects of atorvastatin were abolished when combined with PD98059. Conclusion: Our findings demonstrate that SDH induces ERK1/2 dephosphorylation in meningeal LECs, leading to disrupted basal MLVs and impaired MLD. Additionally, we reveal a beneficial effect of atorvastatin in improving MLD.


Assuntos
Sistema Glinfático , Vasos Linfáticos , Ratos , Animais , Atorvastatina/farmacologia , Células Endoteliais , Sistema de Sinalização das MAP Quinases , Hematoma Subdural
11.
Small ; : e2309597, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38279613

RESUMO

Osteoarthritis (OA) is a dynamic condition characterized by cartilage damage and synovial inflammation. Ozone (O3 ) shows potential therapeutic effects owing to its anti-inflammatory properties; however, its high reactivity and short half-life substantially limit its effectiveness in OA treatment. In this study, an ozone-rich thermosensitive nanocomposite hydrogel loaded with D-mannose is developed for OA treatment. Briefly, O3 is encapsulated in nanoparticles (NPs) composed of perfluorotributylamine and fluorinated hyaluronic acid to improve its stability. Next, D-mannose is conjugated with α-amino of the hydroxypropyl chitin (HPCH) via Schiff base to prepare MHPCH. These nanoparticles are encapsulated in MHPCH to produce O3 NPs@MHPCH. In vitro cell experiments demonstrate that the O3 NPs@MHPCH treatment significantly reduced VEGF and inflammation levels, accompanied by a decrease in inflammatory factors such as IL-1ß, IL-6, TNF-α, and iNOS. Furthermore, O3 NPs@MHPCH promotes the expression of collagen II and aggrecan and stimulates chondrocyte proliferation. Additionally, in vivo studies show that O3 NPs@MHPCH significantly alleviated OA by reducing synovial inflammation, cartilage destruction, and subchondral bone remodeling. O3 NPs@MHPCH offers a promising option for improving the efficacy of O3 therapy and reducing the risk of synovial inflammation and cartilage degeneration in OA.

12.
Mol Cell Biochem ; 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38294731

RESUMO

Subdural hematoma (SDH) drains into the extracranial lymphatic system through the meningeal lymphatic vessels (mLVs) but the formation of SDH impairs mLVs. Because vitamin D (Vit D) can protect the endothelial cells, we hypothesized that Vit D may enhance the SDH clearance. SDH was induced in Sprague-Dawley rats and treated with Vit D or vehicle. Hematoma volume in each group was measured by H&E staining and hemoglobin quantification. Evans blue (EB) quantification and red blood cells injection were used to evaluated the drainage of mLVs. Western blot analysis and immunofluorescence were conducted to assess the expression of lymphatic protein markers. We also examined the inflammatory factors levels in subdural space by ELISA. Vit D treatment significantly reduced SDH volume and improved the drainage of SDH to cervical lymph nodes. The structure of mLVs in SDH rats were protected by Vit D, and the expressions of LYVE1, PROX1, FOXC2, and VE-cadherin were increased after Vit D treatment. The TNF-α, IL-6, and IL-8 levels were reduced in Vit D group. In vitro, Vit D also increased the VE-cadherin expression levels under inflammation. Vit D protects the structure of mLVs and enhances the absorption of SDH, partly by the anti-inflammatory effect of Vit D.

13.
Small Methods ; : e2301726, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38284322

RESUMO

Nature has created various organisms with unique chemical components and multi-scale structures (e.g., foot proteins, toe pads, suckers, setose gill lamellae) to achieve wet adhesion functions to adapt to their complex living environments. These organisms can provide inspirations for designing wet adhesives with mediated drug release behaviors in target locations of biological surfaces. They exhibit conformal and enhanced wet adhesion, addressing the bottleneck of weaker tissue interface adhesion in the presence of body fluids. Herein, it is focused on the research progress of different wet adhesion and bioinspired fabrications, including adhesive protein-based adhesion and inspired adhesives (e.g., mussel adhesion); capillarity and Stefan adhesion and inspired adhesive surfaces (e.g., tree frog adhesion); suction-based adhesion and inspired suckers (e.g., octopus' adhesion); interlocking and friction-based adhesion and potential inspirations (e.g., mayfly larva and teleost adhesion). Other secreted protein-induced wet adhesion is also reviewed and various suckers for other organisms and their inspirations. Notably, one representative application scenario of these bioinspired wet adhesives is highlighted, where they function as efficient drug delivery platforms on target tissues and/or organs with requirements of both controllable wet adhesion and optimized drug release. Finally, the challenges of these bioinspired wet drug delivery platforms in the future is presented.

14.
Artigo em Inglês | MEDLINE | ID: mdl-38065305

RESUMO

Activator protein-1 subfamily member c-Fos wields significant influence over cellular activities, such as regulation of cell growth and division, cell death, and immune responses under various extracellular situations. In this study, the full-length c-Fos of sea cucumber, Apostichopus japonicus (Ajfos) was successfully cloned and analyzed. The anticipated 306 amino acid sequences of Ajfos displayed a basic-leucine zipper (bZIP) domain, similar to invertebrate counterparts. In addition, the qPCR results suggested Ajfos expressed in all tissues, with the highest level in coelomocytes from polian vesicle (vesicle lumen cells), followed by coelomocytes from coelom (coelomocytes). Moreover, the expression levels of Ajfos in the coelomocytes and vesicle lumen cells of sea cucumber showed significant changes after the Vibrio splendidus challenge, especially reaching a peak at 6 h. Compared with the silencing negative control RNA interference (siNC) group, silencing Ajfos (siAjfos) in vivo decreased the downstream proliferation-related gene expression of vesicle lumen cells after infection with V. splendidus while no significant influence was observed on coelomocytes. Furthermore, the proliferation proportion of vesicle lumen cells in the siAjfos group was significantly reduced under pathogen stimulation conditions. Finally, based on the fluctuation trend of total coelomocyte density (TCD) from coelom and polian vesicle previously discovered, it is evident that Ajfos played a critical role in facilitating the swift proliferation of vesicle lumen cells in response to V. splendidus stimulation. Altogether, this research provided an initial reference of the function of Ajfos in echinoderms, unveiling its participation in host coelomocyte proliferation of sea cucumbers during bacterial challenges.


Assuntos
Pepinos-do-Mar , Stichopus , Animais , Stichopus/genética , Fatores de Transcrição , Pepinos-do-Mar/genética , Regulação da Expressão Gênica , Clonagem Molecular , Imunidade Inata/genética
15.
Chemosphere ; 349: 140970, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38114020

RESUMO

Per- and polyfluoroalkyl substances (PFASs) are a group of emerging contaminants, that have a wide range of applications in industrial and commercial products. The direct discharge of untreated industrial and domestic wastewater into freshwater bodies is a common practice in developing countries, which are the main contributors to PFASs in the aquatic environment. The situation is further worsened due to poor wastewater treatment facilities and weak enforcement of environmental regulations in countries like Pakistan. The current study was designed to assess PFASs contamination in muscle tissues of edible fish species from major tributaries of the Indus System, including Head Panjnad (HP), Head Trimmu (HT), Chashma Barrage (CB), Head Blloki (HB) and Head Qadirabad (HQ). The analysis of target PFAS was performed using ultrahigh-performance liquid chromatography coupled with a quadrupole Orbitrap high-resolution mass spectrometry. The highest levels of ∑17PFASs were observed in S. seenghala, C. mirigala from HB, and C. mirigala from HQ with a mean value of 45.4 ng g-1, 43.7 ng g-1, and 40.8 ng g-1, respectively. Overall, the compositional profile of fish samples was predominated by long-chain PFASs such as PFOA, PFOS, PFHpS, and PFDS. The accumulation of PFASs in fish species is dependent on the physiochemical properties of PFASs, characteristics of the aquatic environment, and fish species. Significant associations of PFASs with isotopic composition (p < 0.05), feeding habits (p < 0.05), and zones (p < 0.05) indicate that dietary proxies could be an important predictor of PFASs distribution among species. The C7-C10 PFASs exhibited bio-accumulative tendency with an accumulation factor ranging from 0.5 to 3.4. However, none of the fish samples had sufficiently high levels of PFOS to cause human health risk (HR < 1). For future studies, it is s recommended to conduct seasonal monitoring and the bioaccumulation pattern along trophic levels of both legacy and emerging PFASs.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Poluentes Químicos da Água , Animais , Humanos , Água/análise , Ácidos Alcanossulfônicos/análise , Paquistão , Fluorocarbonos/análise , Poluentes Químicos da Água/análise , Peixes , Monitoramento Ambiental
16.
ACS Nano ; 17(24): 24539-24563, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38091941

RESUMO

Ribonucleic acid (RNA)-based therapies have become an attractive topic in disease intervention, especially with some that have been approved by the FDA such as the mRNA COVID-19 vaccine (Comirnaty, Pfizer-BioNTech, and Spikevax, Moderna) and Patisiran (siRNA-based drug for liver delivery). However, extensive applications are still facing challenges in delivering highly negatively charged RNA to the targeted site. Therapeutic delivery strategies including RNA modifications, RNA conjugates, and RNA polyplexes and delivery platforms such as viral vectors, nanoparticle-based delivery platforms, and hydrogel-based delivery platforms as potential nucleic acid-releasing depots have been developed to enhance their cellular uptake and protect nucleic acid from being degraded by immune systems. Here, we review the growing number of viral vectors, nanoparticles, and hydrogel-based RNA delivery systems; describe RNA loading/release mechanism induced by environmental stimulations including light, heat, pH, or enzyme; discuss their physical or chemical interactions; and summarize the RNA therapeutics release period (temporal) and their target cells/organs (spatial). Finally, we describe current concerns, highlight current challenges and future perspectives of RNA-based delivery systems, and provide some possible research areas that provide opportunities for clinical translation of RNA delivery carriers.


Assuntos
Nanopartículas , Ácidos Nucleicos , Humanos , RNA , Vacinas contra COVID-19 , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/uso terapêutico , Sistemas de Liberação de Medicamentos , Hidrogéis
17.
Opt Express ; 31(22): 36293-36303, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-38017784

RESUMO

We have theoretically investigated the size-dependent optoelectronic properties of InGaP/AlGaInP-based red micro-LEDs through an electro-optical-thermal coupling model. The model considers thermal effects due to current crowding near the electrodes, non-thermal efficiency droop due to electron leakage, and etch defects on the LED sidewall. Sidewall defects reduce the carrier concentration at the light-emitting surface's edge and exacerbate the current crowding effect. In addition, p-side electron leakage at high current densities is the leading cause of the efficiency droop of AlGaInP LEDs. In contrast, the effect of temperature on the overall efficiency degradation of LEDs is even more significant.

18.
BMC Cancer ; 23(1): 929, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37784026

RESUMO

BACKGROUND: Immunoglobulin lambda (Igλ) has been reported to be expressed in many normal and tumor tissues and cells. However, the function and clinical significance of tumor-derived Igλ remain unclear. METHODS: The differential expressions of Immunoglobulin Lambda Constants (IGLCs) in cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) were examined with The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), and Human Protein Atlas (HPA) databases. The effects of IGLCs on patient clinical phenotypes and prognosis were explored via bioinformatics analyses based on the TCGA databases. We used the bioinformatics analyses based on the TCGA and GTEx databases to elucidate the correlations among IGLC expressions, immunomodulator expressions, tumor stemness, and infiltration scores of tumor infiltrating immune cells. Co-immunoprecipitation (Co-IP) and silver staining combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS) were used to obtain potential tumor-derived Igλ-interacting proteins. Functional annotation of candidate proteins identified by LC-MS/MS was performed in Database for Annotation, Visualization and Integrated Discovery (DAVID). The bioinformatics analyses of 7 IGLCs in CESC and normal cervical tissues were performed based on TCGA, GTEx, and Gene Expression Profiling Interactive Analysis 2 (GEPIA2) databases. Protein-protein interaction (PPI) network was analyzed based on tumor-derived Igλ-interacting proteins in Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database. Immunohistochemistry (IHC) was used to validate the expressions of IGLCs in CESC. RESULTS: We found that the expressions of the majority of IGLCs (IGLC1, IGLC2, IGLC3, IGLC4, IGLC5, IGLC6, and IGLC7) were upregulated in CESC tissues, compared with those in normal cervical tissues. The expressions of IGLC5 and IGLC7 had significant difference in different pathologic metastasis (M), one of tumor, node, and metastasis (TNM) staging system, categories of CESC. Except for disease-free interval (DFI), 4 IGLC (IGLC1, IGLC2, IGLC3, and IGLC7) expression levels were positively associated with patient overall survival (OS), disease-specific survival (DSS), and progression-free interval (PFI) respectively in CESC tissues. 5 IGLC (IGLC1, IGLC2, IGLC3, IGLC6, and IGLC7) expressions were positively correlated with the expressions of a majority of immunomodulators respectively in CESC tissues. Tumor stemness was negatively correlated with the expressions of 4 IGLCs (IGLC1, IGLC2, IGLC3, and IGLC7) respectively in CESC tissues. Except for IGLC4, IGLC5, and IGLC7, 4 IGLC (IGLC1, IGLC2, IGLC3, and IGLC6) expressions were positively correlated with infiltration scores of 6 tumor-infiltrating immune cells (B cell, T cell CD4, T cell CD8, neutrophil, macrophage, and DC). After analyses of the above bioinformatics data of tumor-derived Igλ, Co-IP and LC-MS/MS were used to confirm that 4 proteins (RPL7, RPS3, H1-5, and H1-6) might interact with tumor-derived Igλ in cervical cancer cells. Functional analyses of these candidate proteins showed that they interacted with many proteins and were involved in various cellular biological processes. Finally, IHC was used to further confirm the above bioinformatics results, it was indicated that the expression level of Igλ in cervical adenocarcinoma and cervical squamous cell carcinoma was higher than that in normal cervical tissue. CONCLUSION: This study comprehensively investigated the functions of tumor-derived Igλ and its interacting proteins based on bioinformatics analysis and the potential value of Igλ as a prognostic and therapeutic marker for CESC, providing new direction and evidence for CESC therapy.


Assuntos
Adenocarcinoma , Carcinoma de Células Escamosas , Neoplasias do Colo do Útero , Feminino , Humanos , Adenocarcinoma/genética , Adjuvantes Imunológicos , Carcinoma de Células Escamosas/genética , Cromatografia Líquida , Cadeias lambda de Imunoglobulina , Espectrometria de Massas em Tandem , Neoplasias do Colo do Útero/genética
19.
Kidney Dis (Basel) ; 9(4): 229-238, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37899998

RESUMO

Background: The formation of biomolecular condensates via phase separation has emerged as a fundamental principle underlying the spatiotemporal coordination of biological activities in cells. Aberrant biomolecular condensates often directly regulate key cellular process involved in the pathogenesis of human diseases, including kidney diseases. Summary: In this review, we summarize the physiological roles of phase separation and methodologies for phase separation studies. Taking autosomal dominant polycystic kidney disease as an example, we discuss recent advances toward elucidating the multiple mechanisms involved in kidney pathology arising from aberrant phase separation. We suggest that dysregulation of phase separation contributes to the pathogenesis of other important kidney diseases, including kidney injury and fibrosis. Key Messages: Phase separation provides a useful new concept to understand the mechanisms underlying kidney disease development. Targeting aberrant phase-separated condensates offers new therapeutic avenues for combating kidney diseases.

20.
Redox Biol ; 68: 102944, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37890359

RESUMO

AIMS: Endothelial dysfunction plays a pivotal role in atherosclerosis, but the detailed mechanism remains incomplete understood. Nogo-B is an endoplasmic reticulum (ER)-localized protein mediating ER-mitochondrial morphology. We previously showed endothelial Nogo-B as a key regulator of endothelial function in the setting of hypertension. Here, we aim to further assess the role of Nogo-B in coronary atherosclerosis in ApoE-/- mice with pressure overload. METHODS AND RESULTS: We generated double knockout (DKO) mouse models of systemically or endothelium-specifically excising Nogo-A/B gene on an ApoE-/- background. After 7 weeks of transverse aortic constriction (TAC) surgery, compared to ApoE-/- mice DKO mice were resistant to the development of coronary atherosclerotic lesions and plaque rapture. Sustained elevation of Nogo-B and adhesion molecules (VCAM-1/ICAM-1), early markers of atherosclerosis, was identified in heart tissues and endothelial cells (ECs) isolated from TAC ApoE-/- mice, changes that were significantly repressed by Nogo-B deficiency. In cultured human umbilical vein endothelial cells (HUVECs) exposure to inflammatory cytokines (TNF-α, IL-1ß), Nogo-B was upregulated and activated reactive oxide species (ROS)-p38-p65 signaling axis. Mitofusin 2 (Mfn2) is a key protein tethering ER to mitochondria in ECs, and we showed that Nogo-B expression positively correlated with Mfn2 protein level. And Nogo-B deletion in ECs or in ApoE-/- mice reduced Mfn2 protein content and increased ER-mitochondria distance, reduced ER-mitochondrial Ca2+ transport and mitochondrial ROS generation, and prevented VCAM-1/ICAM-1 upregulation and EC dysfunction, eventually restrained atherosclerotic lesions development. CONCLUSION: Our study revealed that Nogo-B is a critical modulator in promoting endothelial dysfunction and consequent pathogenesis of coronary atherosclerosis in pressure overloaded hearts of ApoE-/- mice. Nogo-B may hold the promise to be a common therapeutic target in the setting of hypertension.


Assuntos
Aterosclerose , Doença da Artéria Coronariana , Hipertensão , Placa Aterosclerótica , Humanos , Animais , Camundongos , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/metabolismo , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Molécula 1 de Adesão de Célula Vascular/genética , Molécula 1 de Adesão de Célula Vascular/metabolismo , Proteínas Nogo/genética , Proteínas Nogo/metabolismo , Aterosclerose/genética , Aterosclerose/metabolismo , Placa Aterosclerótica/metabolismo , Estresse Oxidativo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Inflamação/metabolismo , Endotélio/metabolismo , Hipertensão/metabolismo , Apolipoproteínas E/genética , Camundongos Knockout , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...